Linear algebraic approach to Gröbner–Shirshov basis theory

نویسندگان

  • Seok-Jin Kang
  • Dong-il Lee
  • Kyu-Hwan Lee
  • Hyungju Park
  • Efim Zelmanov
چکیده

We construct a new efficient algorithm for finding Gröbner–Shirshov bases for noncommutative algebras and their representations. This algorithm uses the Macaulay matrix [F.S. Macaulay, On some formula in elimination, Proc. London Math. Soc. 33 (1) (1902) 3–27], and can be viewed as a representation theoretic analogue of the F4 algorithm developed by J.C. Faugère. We work out some examples of universal enveloping algebras of Lie algebras and of their representations to illustrate the algorithm. © 2007 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gröbner–Shirshov Bases for Irreducible sln+1-Modules

In [10], inspired by an idea of Gröbner, Buchberger discovered an effective algorithm for solving the reduction problem for commutative algebras, which is now called the Gröbner Basis Theory. It was generalized to associative algebras through Bergman’s Diamond Lemma [2], and the parallel theory for Lie algebras was developed by Shirshov [21]. The key ingredient of Shirshov’s theory is the Compo...

متن کامل

Gröbner-shirshov Basis for the Braid Semigroup

We found Gröbner-Shirshov basis for the braid semigroup B n+1. It gives a new algorithm for the solution of the word problem for the braid semigroup and so for the braid group.

متن کامل

Gröbner-Shirshov Bases for Lie Algebras: after A. I. Shirshov

In this paper, we review Shirshov’s method for free Lie algebras invented by him in 1962 [17] which is now called the Gröbner-Shirshov bases theory.

متن کامل

Gröbner-Shirshov besis for a free inverse semigroup

A new construction of a free inverse semigroup was obtained by Poliakova and Schein in 2005. Based on their result, we find a Gröbner-Shirshov basis of a free inverse semigroup relative to the deg-lex order of words. In particular, we give the (unique and shortest) Gröbner-Shirshov normal forms in the classes of equivalent words of a free inverse semigroup together with the Gröbner-Shirshov alg...

متن کامل

Anti-commutative Gröbner-Shirshov basis of a free Lie algebra

One of the natural ways to prove that the Hall words (Philip Hall, 1933) consist of a basis of a free Lie algebra is a direct construction: to start with a linear space spanned by Hall words, to define the Lie product of Hall words, and then to check that the product yields the Lie identities (Marshall Hall, 1950). Here we suggest another way using the Composition-Diamond lemma for free anti-co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007